Chefeat.ru

Здоровое питание

Органические гидропероксиды

20-06-2023

Перейти к: навигация, поиск
Строение молекулы органических гидропероксидов.png

Органические гидропероксиды — соединения состава ROOH, содержащие пероксидную группу O-O и являющиеся формальными органическими производными пероксида водорода, в молекуле которого один из атомов водорода заменён на углеводородный радикал R.

Строение

В гидропероксидах углеводородный радикал (алкильный, алкенильный, арильный и др.) соединён с гидропероксидной группой OOH, которая определяет физические и химические свойства гидропероксидов. Прочность связи O-O ~160-200 кДж/моль уступает прочности связей O-H (~480 кДж/моль), O-C (~380 кДж/моль) и сопоставима с прочностью связи O-N (~155 кДж/моль), что указывает на её высокую реакционную способность. Каждый атом кислорода пероксидной группы имеет по неподелённой электронной паре, которые отталкиваются друг от друга и взаимодействуют с электронными облаками соседних групп, образуя неплоскую конфигурацию R-O-O-H. Так, в молекуле трет-бутилгидропероксида угол O-O-H составляет 100°, длина связи C-O 1,463 A, длина связи O-O 1,472 A. Неподелённые электронные пары атомов кислорода способны образовывать комплексы с катионами и электрофильными веществами, и в то же время гидропероксидная группа сама является слабым электрофильным агентом.

Полярность O-H связи приводит к тому, что органические гидропероксиды способны образовывать внутри- и межмолекулярные водородные связи. В частности, в растворах гидропероксиды могут образовывать димеры и тримеры:

В растворах гидропероксиды образуют ассоциаты с молекулами веществ-акцепторов водорода, например, со спиртами, с простыми и сложными эфирами, кетонами. Образование подобных ассоциатов оказывает влияние на механизм реакции гидропероксидов с этими веществами.

Физические и химические свойства

Физические свойства

Низшие алкилгидропероксиды представляют собой бесцветные жидкости, с более высокой молекулярной массой — кристаллические вещества.

Окислительные свойства

Вследствие наличия атомов кислорода в промежуточной степени окисления −1 гидропероксиды проявляют окислительные свойства, в частности, способны окислять ионы металлов переменной валентности:

Гидропероксиды способны окислять органические соединения:

  • органические сульфиды окисляются в сульфоксиды и сульфоны
  • триалкилфосфиты окисляются до триалкилфосфатов:

Термолиз

Термический распад органических гидропероксидов может протекать по мономолекулярному механизму по O-O связи:

Процесс осложняется образованием ассоциатов молекул гидропероксида как друг с другом, так и с молекулами растворителя, и бимолекулярный распад гидропероксидов протекает быстрее:

где HX — алканы, алкены, амины, спирты и др. Так, при малых концентрациях гидропероксидов их распад протекает по кинетическому уравнению первого порядка, при повышении концентрации — по уравнению второго порядка.

Термолиз гидропероксидов осложняется реакциями индуцированного распада, вовлечением молекул растворителя HSol и цепным процессом разложения:

При добавлении акцепторов свободных радикалов индуцированный распад подавляется.

При распаде первичных гидропероксидов образуются первичные спирты, распад вторичных гидропероксидов приводит к вторичным спиртам и кетонам, третичные гидропероксиды разлагаются с разрывом C-C связи, например, гидропероксид кумола превращается в ацетон и фенол.

Получение

Автоокисление углеводородов

Органические пероксиды образуются в ходе автоокисления углеводородов по общей схеме радикального цепного процесса:

В частности, таким способом получают гидропероксид кумола: водную эмульсию кумола окисляют кислородом воздуха при pH = 8,5 — 10,5, инициатором может служить азобисизобутиронитрил.

Синтез с пероксидом водорода

Ряд органических гидропероксидов можно получить взаимодействием пероксида водорода с галогеналканами, алкенами, спиртами, органическими сульфатами, метансульфонатами:

Замещение атома галогена на гидропероксидную группу протекает по SN2-механизму и проходит тем легче, чем слабее связь C-Hal:

Синтез с реактивами Гриньярами

Медленное окисление разбавленных (~ 0,5 н.) реактивов Гриньяра кислородом воздуха при низких температурах (~ −70 °C) позволяет получить гидропероксиды с большим выходом:

Применение

Органические гидропероксиды применяются в качестве

  • окислителей в препаративном синтезе, например, при получении эпоксидов (оксиранов)
  • инициаторов радикальной полимеризации

Литература

  • В. Л. Антоновский, С. Л. Хурсан Физическая химия органических пероксидов. — М.: ИКЦ «Академкнига», 2003. — 391 с. — 400 экз. — ISBN 5-94628-126-7.
  • О. П. Яблонский, В. А. Беляев, А. Н. Виноградов (1972). «Ассоциация гидроперекисей углеводородов». Успехи химии 61 (7): 1260-1276.
  • С. В. Завгородний (1961). «Гидроперекиси алкилароматических углеводородов и их производных». Успехи химии 30 (345-385): 1260-1276.
  • А. И. Рахимов Химия и технология органических перекисных соединений. — М.: «Химия», 1979. — 392 с. — 2 900 экз.
  • Э. Дж. Э. Хавкинс Органические перекиси, их получение и реакции. — М., Ленинград: «Химия», 1961. — 536 с. — 4 000 экз.

Органические гидропероксиды.

© 2014–2023 chefeat.ru, Россия, Челябинск, ул. Речная 27, +7 (351) 365-27-13