Chefeat.ru

Здоровое питание

Моменты случайной величины

14-10-2023

Моме́нт случа́йной величины́ — числовая характеристика распределения данной случайной величины.

Содержание

Определения

Если дана случайная величина определённая на некотором вероятностном пространстве, то:

  • нача́льным моментом случайной величины где называется величина
если математическое ожидание в правой части этого равенства определено;
  • центра́льным моментом случайной величины называется величина
  • абсолю́тным и -м центральным абсолютным моментами случайной величины называется соответственно величины
и
  • факториальным моментом случайной величины называется величина
если математическое ожидание в правой части этого равенства определено.

Абсолютные моменты могут быть определены не только для целых , но и для любых положительных действительных в случае, если соответствующие интегралы сходятся.

Замечания

  • Если определены моменты -го порядка, то определены и все моменты низших порядков
  • В силу линейности математического ожидания центральные моменты могут быть выражены через начальные, и наоборот. Например:
и т. д.

Геометрический смысл некоторых моментов

  • равняется математическому ожиданию случайной величины и показывает относительное расположение распределения на числовой прямой.
  • равняется дисперсии распределения и показывает разброс распределения вокруг среднего значения.
  • , будучи соответствующим образом нормализован, является числовой характеристикой симметрии распределения. Более точно, выражение
называется коэффициентом асимметрии.
  • контролирует, насколько ярко выражена вершина распределения в окрестности среднего. Величина
называется коэффициентом эксцесса распределения

Вычисление моментов

если

а для дискретного распределения с функцией вероятности

если

  • Если распределение таково, что для него в некоторой окрестности нуля определена производящая функция моментов то моменты могут быть вычислены по следующей формуле:

Обобщения

Можно также рассматривать нецелые значения . Момент, рассматриваемый как функция от аргумента , называется преобразованием Меллина.

Можно рассматривать моменты многомерной случайной величины. Тогда первый момент будет вектором той же размерности, второй — тензором второго ранга (см. матрица ковариации) над пространством той же размерности (хотя можно рассматривать и след этой матрицы, дающий скалярное обобщение дисперсии). И т. д.

Моменты случайной величины.

© 2014–2023 chefeat.ru, Россия, Челябинск, ул. Речная 27, +7 (351) 365-27-13